遗传算法和粒子算法简介
遗传算法和粒子算法简介
一 原理
1.初始化种: 随机生成一组个体(解决方案)作为初始种。
2.评估适应度: 对每个个体进行适应度评估,衡量其在问题空间中的优劣程度。
.选择: 通过一定的选择策略(如、锦标赛等)从当前种中选择出优良的个体,作为繁殖下一代的父代。
4.交叉: 对选出的父代进行交叉操作,生成新的个体。
5.变异: 对新生成的个体进行一定概率的变异,引入新的遗传信息。
6.更新种: 将新生成的个体与原种进行比较,选择一定数量的优秀个体进入下一代种。
7.重复迭代: 重复以上步骤直至达到停止条件(如达到最大迭代次数、达到满意解等)。
二 优缺点
优点:
并行性高:易于并行化处理,加速搜索过程。
适用性广:适用于各种类型的优化问题。
不受局部最优解限制:能够避免陷入局部最优解,具有较强的全局搜索能力。
缺点:
参数调整难度大:需要合适的参数设置才能获得良好的结果。
需要大量计算资源:对于复杂问题,需要大量的计算资源和时间。
不保证收敛性:无法保证一定能够到最优解,而是以一定概率搜索到最优解或较好解。
代码示例
代码语言:python代码运行次数:0运行复制mport numpy as np
from sklearn.datasets import make\_classification
from sklearn.svm import SVC
from \_selection import train\_test\_split
from import accuracy\_score
from deap import base, creator, tools, algorithms
# 创建适应度评估函数
def evaluate(individual, X, y):
gamma = individual[0]
C = individual[1]
clf = SVC(gamma=gamma, C=C)
scores = cross\_val\_score(clf, X, y, cv=5)
return (scores),
# 创建适应度评估函数的最小化目标
("FitnessMin", base.Fitness, weights=(-1.0,))
# 创建个体和体类
("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr\_float", np.random.uniform, 0, 5) # 随机生成参数范围在0到5之间的浮点数
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr\_float, n=2)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", , alpha=0.5) # 交叉算子
toolbox.register("mutate", , mu=0, sigma=0.2, indpb=0.2) # 变异算子
toolbox.register("select", tools.selTournament, tournsize=) # 选择算子
toolbox.register("evaluate", evaluate)
# 生成示例数据
X, y = make\_classification(n\_samples=1000, n\_features=20, n\_classes=2, random\_state=42)
# 划分训练集和测试集
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)
# 生成初始种
population = toolbox.population(n=50)
# 迭代进化
GE = 10
for gen in range(GE):
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
fits = (, offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
population = toolbox.select(offspring, k=len(population))
# 输出最优解
best\_individual = tools.selBest(population, k=1)[0]
best\_gamma, best\_C = best\_individual
print("Best gamma:", best\_gamma)
print("Best C:", best\_C)
# 使用最优参数训练模型
clf = SVC(gamma=best\_gamma, C=best\_C)
clf.fit(X\_train, y\_train)
# 在测试集上评估模型性能
y\_pred = clf.predict(X\_test)
accuracy = accuracy\_score(y\_test, y\_pred)
print("Test Accuracy:", accuracy)
原理
1.初始化粒子: 随机生成一组粒子(解决方案),每个粒子有自己的位置和速度。
2.评估适应度: 对每个粒子进行适应度评估,衡量其在问题空间中的优劣程度。
.更新个体最优解: 对于每个粒子,根据其自身历史最优解和当前位置的适应度,更新个体最优解。
4.更新全局最优解: 从所有粒子的个体最优解中选择全局最优解。
5.更新速度和位置: 根据个体和全局最优解,更新每个粒子的速度和位置。
6.重复迭代: 重复以上步骤直至达到停止条件(如达到最大迭代次数、达到满意解等)。
优缺点
优点:
简单易实现:算法结构相对简单,易于理解和实现。
适用范围广:适用于多种类型的优化问题,如连续型和离散型优化问题。
不需要梯度信息:与一些传统的优化算法(如梯度下降)相比,PSO不需要梯度信息,因此适用于非光滑、高度非线性的优化问题。
缺点:
参数敏感性:需要合适的参数设置才能获得良好的结果,如粒子数量、惯性权重等。
可能陷入局部最优解:在某些情况下,由于算法本身的局限性,可能陷入局部最优解而无法全局搜索。
收敛速度慢:相较于一些进化算法(如遗传算法),PSO 的收敛速度可能较慢。
代码示例
代码语言:python代码运行次数:0运行复制import numpy as np
from sklearn.datasets import make\_classification
from sklearn.svm import SVC
from \_selection import train\_test\_split
from import accuracy\_score
from pyswarm import pso
# 生成示例数据
X, y = make\_classification(n\_samples=1000, n\_features=20, n\_classes=2, random\_state=42)
# 划分训练集和测试集
X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, test\_size=0.2, random\_state=42)
# 定义适应度评估函数
def evaluate(parameters, X, y):
gamma, C = parameters
clf = SVC(gamma=gamma, C=C)
clf.fit(X, y)
y\_pred = clf.predict(X)
accuracy = accuracy\_score(y, y\_pred)
return -accuracy # 负号表示最小化问题
# 定义参数优化的目标函数
def objective\_function(parameters):
return evaluate(parameters, X\_train, y\_train)
# 设定参数范围
lb = [0.1, 0.1] # 参数下界
ub = [10, 10] # 参数上界
# 使用粒子算法进行优化
parameters, \_ = pso(objective\_function, lb, ub, swarmsize=10, maxiter=20)
# 输出优化后的最优参数
best\_gamma, best\_C = parameters
print("Best gamma:", best\_gamma)
print("Best C:", best\_C)
# 使用最优参数训练模型
clf = SVC(gamma=best\_gamma, C=best\_C)
clf.fit(X\_train, y\_train)
# 在测试集上评估模型性能
y\_pred = clf.predict(X\_test)
accuracy = accuracy\_score(y\_test, y\_pred)
print("Test Accuracy:", accuracy)
#感谢您对电脑配置推荐网 - 最新i3 i5 i7组装电脑配置单推荐报价格的认可,转载请说明来源于"电脑配置推荐网 - 最新i3 i5 i7组装电脑配置单推荐报价格
推荐阅读
留言与评论(共有 18 条评论) |
本站网友 牛筋草 | 27分钟前 发表 |
如连续型和离散型优化问题 | |
本站网友 极品音乐论坛 | 8分钟前 发表 |
C=best\_C) clf.fit(X\_train | |
本站网友 红岛租房 | 4分钟前 发表 |
本站网友 徐州医学院华方学院 | 4分钟前 发表 |
toolbox.individual) toolbox.register("mate" | |
本站网友 茅山师傅 | 7分钟前 发表 |
best\_gamma) print("Best C | |
本站网友 什么是服务 | 3分钟前 发表 |
n\_classes=2 | |
本站网友 光通讯 | 18分钟前 发表 |
根据个体和全局最优解 | |
本站网友 大葱的营养价值 | 8分钟前 发表 |
对每个个体进行适应度评估 | |
本站网友 电脑主机 | 24分钟前 发表 |
由于算法本身的局限性 | |
本站网友 抚松宾馆 | 17分钟前 发表 |
2.评估适应度 | |
本站网友 明星公司 | 17分钟前 发表 |
C=best\_C) clf.fit(X\_train | |
本站网友 红蟹能吃吗 | 12分钟前 发表 |
4.交叉 | |
本站网友 关明生 | 22分钟前 发表 |
weights=(-1.0 | |
本站网友 nst | 14分钟前 发表 |
best\_C) # 使用最优参数训练模型 clf = SVC(gamma=best\_gamma | |
本站网友 膀胱肿瘤 | 9分钟前 发表 |
creator.Individual | |
本站网友 王子翔 | 12分钟前 发表 |
本站网友 内切去眼袋 | 27分钟前 发表 |
具有较强的全局搜索能力 |