您现在的位置是:首页 > 编程 > 

当AI创业公司遇困境,能借“Agent化”到新出路吗?

2025-07-23 02:50:51
当AI创业公司遇困境,能借“Agent化”到新出路吗? 编者按:以变革应对变局,以远见超越未见。适道、大象新闻、大象财富联合腾讯新闻、腾讯科技,推出2024年终策划《变局之下》,回望2024、展望2025,让洞见穿越时间,向未来寻求确定。作者 狮刀、Rika编辑 腾讯科技 郑可君、郝博阳202年底,斯坦福大学发布了一款引发轰动的AI实验项目——"小镇模拟游戏"。在这个虚拟小

当AI创业公司遇困境,能借“Agent化”到新出路吗?

编者按:以变革应对变局,以远见超越未见。适道、大象新闻、大象财富联合腾讯新闻、腾讯科技,推出2024年终策划《变局之下》,回望2024、展望2025,让洞见穿越时间,向未来寻求确定。

作者 狮刀、Rika

编辑 腾讯科技 郑可君、郝博阳

202年底,斯坦福大学发布了一款引发轰动的AI实验项目——"小镇模拟游戏"。在这个虚拟小镇里,25个AI角能够自主交谈、建立关系、制定计划,展现出了令人惊叹的社交能力。这个实验让人们第一次对AI Agent(智能体)产生了期待——具有自主意识和决策能力的AI助手指日可待。

一年过去了,AI Agent的概念在业界炙手可热。微软、Google等科技巨头纷纷布局,初创公司们也争相推出各类"Agent"产品。然而,当我们仔细观察这些号称是"Agent"的产品时,会发现一个尴尬的现实:它们与真正的Agent相去甚远,更像是仅仅具备自然语言理解能力的对话机器人。

这种"形似神不似"的现象,在AI硬件领域也不断上演。2024年10月,智能戒指品牌Oura推出了最新款Oura Ring 4,并"识时务"地加入了AI功能。很快,Oura估值超50亿美金,成为了商业化最成功的"AI硬件"厂商之一。然而,一个共识是:Oura的成功与AI关系并不大,其核心价值仍在于健康追踪这一基础功能。相比之下,真正主打AI的硬件产品,如AI Pin、Rabbit R1却遭遇了"上市即翻车"的命运。

什么称得上AI Agent?随手打开一个大模型APP,映入眼帘的Prompt Agent?还是编程领域的专业 Agent Cursor?亦或是钢铁侠的全能助手Jarvis?

美国VC Madrona合伙人Jon Turow曾指出:当你聊过足够多的从业者,你会发现有一系列不同概念的东西,它们都叫做Agent 。

如果将AI Agent形容为一场马拉松,2025年的AI Agent行至何处?

2024年AI Agent观察:一半是海水,一半是火焰

  • 热闹的景象:各路玩家就位

2024上半年,大模型价格战还在轰轰烈烈进行;下半年,AI Agent争夺战就已经蓄势待发。

海外市场,OpenAI、Anthropic、微软、谷歌等科技巨头纷纷公布相关进展,将自家Agent实力当作牌桌上的重要筹码。

10月,Anthropic 推出了名为“Computer Use”的AI Agent系统,号称能够“像人一样操作计算机”。这是一个特殊API,允许开发者指导 Claude完成各种计算机操作任务——观察屏幕内容、移动鼠标、点击按钮以及打字等等。开发者可以通过该 API 将书面指令转换为具体的计算机指令,从而实现自动化任务。 

(图片:Anthropic开发人员演示Computer use)

微软也是AI Agent的重要推动者。2024年10 月,微软公布了一项重要计划:面向 Dynamics 65业务应用平台,开发部署10款AI Agent——将主要服务于企业的销售环节、会计业务以及客户服务等关键领域。按照时间表,这些AI Agent将在年底开放公测,测试阶段预计延续到 2025 年初期。

(图片:微软CEO展示Copilot与AI堆栈)

谷歌的反应相对较慢,但在年底也赶上了进度。12月,谷歌发布了全新多模态大模型Gemini 2.0。在新模型的加持下,谷歌内置了三款AI Agent——“通用大模型助手”Project Astra、“浏览器助手”Project Mariner 和“编程助手”Jules。

“编程助手”Jules能够作为自主代理直接集成到GitHub的工作流程系统中,分析复杂的代码库,跨多个文件实施修复,并准备详细的拉取请求,无需持续的人工监督;而在游戏《部落冲突》演示中,谷歌AI Agent不仅能够向玩家介绍兵种特性,给出组合建议,还可以在Reddit检索信息,为玩家提供角选择建议。

(图片:玩家与谷歌AI Agent互动)

OpenAI虽然是基础模型的领先者,在Agent方面布局却略显迟缓。7月,OpenAI 更新AGI路线图,并指出自己处于第一层,接近达到第二层;而第三层才是AI Agent。

(图片:OpenAI 定义的人工智能发展 5 阶段)

OpenAI预计将于2025年1月推出全新AI Agent——Operator,该系统能够自动执行各种复杂操作,包括编写代码、预订旅行、自动电商购物等。据悉,Operator可能会在Computer use的基础上进行大幅度创新和应用简化,扩大AI Agent的使用范围和应用场景。

国内市场,百度、阿里、腾讯、智谱等大厂也纷纷入局。

在B端,百度文心智能体平台、腾讯元器、讯飞星火智能体创作中心、通义智能体、字节扣子等面向企业用户提供了智能体创建平台,并开始在其AI智能助手界面中添加AI Agent入口。

在C端,支付宝旗下AI App支小宝、智谱AutoGLM点燃了消费者用户的激情。根据演示,智谱AutoGLM能够浏览并理解屏幕信息,做出任务规划,实现手机上常用操作的模拟执行——只需接收简单的文字/语音指令,它就可以模拟人类操作手机,在朋友圈点赞,在美团点外卖,在携程订酒店等等。

  • 冷静的现实:当我们在谈论AI Agent时,到底是在谈论什么?

如果只看到上述的热闹景象,你大概会得出结论——2024年是AI Agent的当打之年。

但用户能够真正依赖的AI Agent,其实寥寥无几。

只需花秒钟思考——你喜欢用哪几款AI Agent?如果你是程序员,答案可能只是Cursor。如果我们换个问题——你喜欢用哪几款AI大模型?答案会五花八门,比如ChatGPT、Gemini、Claude、Kimi等等。

至少从实感来说,目前大热的AI Agent仍是“虚火”。

主因是“不靠谱”和“鸡肋”。AI Agent依赖LLM“黑盒”,本身就存在不可预测性,而工作流程更是要将多个AI 步骤连接起来,会加剧这些问题,尤其是对于需要精确输出的任务。用户难以确保Agent能否始终提供准确、符合上下文的响应。

LangChain发布的State of AI Agents可以作为重要参考。其调查涉及的100多位受访者指出,性能质量(41%)是首要关注点,重要性远超成本(18.4%)和安全(18.4%)等因素。甚至对于向来格外关注成本的小企业而言,其中45.8%将性能质量列为主要关注点,成本因素仅为22.4%。同时,报告指出,生产中采用AI Agents的主要挑战包括:开发人员很难向团队和利益相关者解释 AI Agent 的功能和行为。

此外,虽然AI Agent依赖的基座LLMs在Tool use方面表现不错,但它们速度不快且成本高,特别是需要进行循环和自动重试时。WebArena 排行榜对 LLM智能体在现实任务中的表现进行了基准测试。结果显示,即便是表现最好的模型SteP,成功率也只有5.8%,而GPT-4的成功率仅达到14.9%。

那么,市面上不能“完全自理”的AI Agent算得上Agent吗?

如果我们按吴恩达的思路就很好理解了——AI Agent是可以分层级的。他提出了Agentic System(智能体系统),并认为形容词“Agentic”比名词“Agent”能更好地帮助我们理解这类智能体的本质。如同自动驾驶汽车L1-L4,Agent的进化也是一个过程。

BabyAGI创始人Yohei akajima对于AI Agent的分类,同样值得参考。

1、手工制作Agent:由 Prompt和API 调用组成的链条,具有一定自主性,但约束较多。

特征:流水线机器人,按照固定步骤完成任务。

举例:它就像一个专门订票的助手——当你告诉航班需求时,它能够直接调用API搜索并完成预订;然而一旦涉及复杂行程规划,手工制作Agent就会“卡住”(欢迎大家代入产品)。

2、专业Agent:在一组任务类型和工具内动态决定要做什么,比手工制作Agent约束少。

特征:娴熟工匠,能够在特定领域(比如木工)熟练地使用工具,不仅能按照要求制作家具,还能根据实际需求调整设计,调用材料。

举例:AutoGPT通过CoT技术分解复杂问题,动态选择最优解决路径。面对一个市场研究任务,AutoGPT能自动分解任务为“搜索趋势”“整理数据”“生成报告”等子任务并完成。

、通用Agent:Agent的AGI——目前还处于理论概念阶段,尚未实现。

特征:全能助手,就像钢铁侠的Jarvis。你可以询问它任何问题,它不仅能理解你的需求,还能结合知识和环境动态适应,提供创新解决方案。

举例:还没有真正能实现的产品,相关研究包括更强的多模态交互和长期记忆优化。

处于当前的历史节点,Prompt Agent数量最多,表现为大模型APP里的遍地Agent;垂直领域的专业Agent正处于爆点,并因其实用性备受资本青睐;人类所期待的真正Agent——全能助手Jarvis,有待关键技术突破。这也意味着未来一段时间内,我们能看到更多“L1-L4”之间的技术进化。

  • 这一年AI Agent“皮下”技术进化到哪儿了?

根据Lilian Weng列举的公式:Agent = LLM+Memory+Planning skills+Tool use

假设你是黑暗料理界的“五虎星”。LLM代表你的知识储备,包含所有菜系菜谱;Memory类似于你的厨师笔记,记录着不同食客的口味需求,输给“小当家”的历史教训;Planning好比你的做菜规划,面对不同要求,是先炸再烤,还是先煮再炸;Tools则是你的魔法厨具,包括如何调用不同刀具(软件),帮助执行复杂的任务。

AI Agent的突破取决于各项技术的进步。

首先是LLM。在GPT5这样的强悍“大脑”出现之前,OpenAI就发现了推理引擎的能力。

2024年10月,OpenAI高级研究科学家、德扑AI之父oam Brown提出:让AI模型思考20秒所带来的性能提升,相当于将模型扩大100,000倍并训练100,000倍的时间。

Brown所指的技术便是System 1/2 thinking,正是OpenAI o1长出“推理能力”的秘诀。

System 1,即“快思考”,你看到一只苹果,不需要思考,就知道这是水果;System 2,即“慢思考”,你要做一道17*24的数学题,则需拆解步骤来思考,答案才更准确。

近期,谷歌DeepMind研究人员也将这项技术集成到AI Agent中,并开发了Talker-Reasoner框架。System 1是默认运行的“快速模式”,而System 2作为“备用引擎”随时待命。当System 1感到困惑时,会将任务交给System 2处理。“双引擎”共同运行,对于解决复杂、冗长的任务帮助巨大,突破了传统AI Agent执行业务流程的方法,极大提升了效率。

其次是记忆机制。当生成式AI开始“胡言乱语”,或许不是性能问题,而是记忆力不佳。这时候就需要RAG(检索增强型生成)来帮忙。它是LLM“外挂”般的存在,能够利用外部知识库为LLM提供相关上下文,防止LLM不懂装懂。

然而,传统RAG流程只考虑一个外部知识源,不能调用外部工具;仅生成一次性解决方案,上下文只检索一次,不能进行推理或验证。

在此情况下,融合Agent能力的RAG应运而生。虽然Agentic RAG在整体流程上与传统RAG一脉相承:检索-合成上下文-生成,但其融入了Agent自主规划能力,能够适应更加复杂的RAG查询任务——决定是否需要检索;自主决策使用哪个检索引擎自主规划使用检索引擎的步骤;评估检索到的上下文,并决定是否重新检索;自行规划是否需要借助外部工具。

如果说,原始RAG是坐在图书馆查看特定问题;那么,Agentic RAG就像拿着iPhone,调用Google浏览器、等等搜索问题。

此外,2024年YC孵化的开源Mem0项目,也有望成为RAG助手,并为AI Agent插上个性化记忆的翅膀。

Mem0像是大脑的“海马体”,为LLM提供了一个智能、自我优化的记忆层。它能进行信息分层存储——将短时信息转化为长期记忆。类似于,你会整理“新学知识”,而后存入脑海;它还能建立语义链接——通过语义分析为存储的知识创建关联网络。类似于,你告诉 AI自己喜欢看电影,它不仅能记住,还会推测你可能喜欢的犯罪纪录片。

基于此,Mem0能够显著提升AI Agent个性化记忆——动态记录用户偏好、行为和需求,创建“私人记事本”。例如,当你告诉AI Agent下周是妈妈生日,它不仅会及时提醒你送上祝福,还会根据“记忆中”你和妈妈的喜好,给出送礼建议,甚至能够跨平台“货比三家”,奉上购物链接。

在RAG方面的突破不止于此,俄亥俄州立大学和斯坦福大学的科学家团队提出了一个有趣的思路:让AI拥有一个类似人类海马体的“记忆大脑”。他们从神经科学的角度出发,模仿人脑海马体在长期记忆中的作用,设计出一个名为HippoRAG的模型,像人脑一样高效地整合和搜索知识。实验表明,“记忆大脑”能够在多跳问答等需要知识整合的任务上取得大幅提升。或许探索出让大模型具备“类人”记忆的一个全新方向。

Tool use的进步更是肉眼可见。例如,Claude的Computer Use,通过构建API,将自然语言提示转化为各种电脑操作指令,由开发者自动化重复性的任务、进行测试和质量保证,以及开放式研究。从此,AI不需要一个个专门的API“钥匙”也能“一次性”调用各种软件完成各种操作:用Word写文档,用Excel处理表格,用浏览器搜索信息。虽然如此,目前Computer Use能力还不完善:不能在内部数据上训练该功能;受限于上下文窗口等等。Anthropic团队也表示,现在Claude的计算机使用水平只处于类似“GPT- 时代”的早期阶段,未来还有很大提升空间。

值得注意的是,AI Agent的视觉能力也取得了进步。例如,智谱发布的 GLM-PC 将其通用的视觉-操作模型 CogAgent 应用到了计算机上。其能够模拟人类的视觉感知来从环境中获取信息输入,以进行进一步的推理和决策。

规划能力方面。Planning包含任务分解——将大任务划分成小任务;反思和提炼——基于已有动作进行自我反思,从错误中学习优化接下来的动作。

目前,有论文提出更为新颖的分类法:任务分解、多计划选择、外部模块辅助规划、反思与细化、记忆增强规划。其中,多计划选择,即给AI Agent一个“选择轮”,生成多个计划,挑一个最好的来执行;外部模块辅助规划,即借助外部规划器,类似强化学习的判官。记忆增强规划,就像 一个记忆面包,记住过去经验,为将来规划提供帮助。这些方法并不孤立,而是相互交织,共同提升AI Agent的规划能力。

一年以来,Agent“皮下”各项能力均取得了进步,其中Tool use能力已经初步落地;记忆机制的进步非常值得期待;LLMs的进步则取决于巨头的能力边界等等。但对于Agent而言,其能力的最大化并非各项技术简单的加成,任何一项技术的突破均有望使其迎来质变。

未来,AI Agent进化的重要挑战包括但不限于:如何实现低延迟、带视觉理解的实时反馈;如何构建个性化的记忆系统;如何在虚拟与物理环境都具备鲁棒的执行能力等等。只有当AI Agent从“工具”到“工具使用者”时,真正的Killer Agent就会出现。

资本的选择——大模型遇冷,AI Agent当立

有人说,现在大模型卷不动了,要卷就卷AI Agent。

2024年,曾经争做“做中国OpenAI”的大模型公司不得已食言,以“六小虎”智谱AI、零一万物、百川智能、MiniMax、月之暗面和阶跃星辰为例,多数公司已经开始进行业务调整,甚至人员缩减。大厂凭借其雄厚的家底,还能继续卷研发;更多初创企业被迫直面现实,转向大模型应用层面,寻求更低的成本和更快的回报。

同时,敏锐的资本也将目光投向了AI应用层。

桔子IT数据显示,2024年前9个月,国内AI领域发生了17起融资案例,月均融资金额42亿元,不到去年的两成。其中,融资最多的5家公司拿走了超212亿,相当于今年国内AI融资总额的6%。

值得注意的是,大模型和AI Agent项目受投资人的关注度最高——大模型发生19起融资案,AI Agent发生了18起。其次是AI视频生成(10%),剩下50%投资案例的方向较为分散,被19个方向瓜分。

由此,在大模型“赢家通吃”的局势下,AI Agent既是AI初创公司的最佳方向,也是海内外资本的笃定之选。

YC合伙人、资深投资人Jared指出,垂直领域 AI Agent 作为一种新兴B2B 软件,有望成为比SaaS大10倍的新兴市场。凭借替代人工操作、提升效率的显著优势,这一领域可能催生出市值超过000亿美元的科技巨头。

投资人所看中的AI Agent都长什么样?

最出圈的当属AI编程神器Cursor。原因不外乎代码是LLMs最容易掌握的能力,其生成的训练数据主要来自GitHub上的开源代码,大部分都是“有效数据”。此前,Cursor是根据用户需求,提供建议代码。如今,Cursor可以直接以实现需求为目的,一口气帮助你创造代码文件,准备好运行环境。你只需点击启动按钮,就可以运行代码。

除此之外,即便2024年尚未产生真正的Killer Agent,但实际上在细分领域,Agent已经有遍地开花之势了。

根据YC团队的最新分享。目前已经获得投资的Agent项目大多在toB领域。

问卷调查和分析:Outset将 AI Agent应用于问卷调查和分析领域,可以替代传统的人工调查和分析工作,例如 Qualtrics等公司提供的服务。

软件质量测试:Mtic利用 AI Agent进行软件质量测试,可以完全取代传统的 QA 测试团队。与之前的 QA 软件即服务公司(如 Rainforest QA)不同,Mtic不仅提高了QA 团队的效率,还能完全取代人工测试。

政府合同竞标:Sweet Spot利用 AI Agent自动搜索、填写政府合同的标书,可以替代人工完成这些繁琐的任务。

客户支持:Powerhelp利用 AI Agent,自动完工接听电话、回复邮件和解决问题,并且能够根据用户提问和历史记录提供个性化的解决方案,提升其满意度。

人才招聘:Priora和ico,利用 AI Agent进行技术筛选和初步招聘,可以替代人工完成这些任务。

用吴恩达的发言做总结:通往 AGI 的道路感觉更像是一段旅程,而不是一个目的地。但我认为Agent式工作流,可以帮助我们在这个非常漫长的旅程中向前迈进一小步。换句话说,即便我们暂时无法拥有“全能Agent”,但多个垂直领域的专业Agent逐渐出现,将让我们不断获得近似拥有Jarvis的体验。

2025年:有望成为AI Agent商用爆发元年

近日,前OpenAI联创、SSI创始人 Ilya Sutskever直接宣布:预训练从此将彻底终结——我们只有一个互联网,训练模型需要的海量数据即将枯竭,唯有从现有数据中寻新的突破,AI才会继续发展。

Sutskever用人类大脑发展进行类比:正如人类大脑体积停止生长后,人类智慧仍在进步。AI未来发展将转向在现有LLM上构建 AI Agent和工具。他预测,以后的突破点,就在于智能体(Agentic)、合成数据和推理时计算。其中,能够自主完成任务的AI Agent,是未来的发展方向。

值得注意的是,与吴恩达一样,Sutskever同样使用“形容词”Agentic描述智能体。

根据线性资本Bolt观点:我们可以用少量的、适量的、高度的Agentic“能力”描述Agent应用的能力。例如,Router(路由)类系统使用LLM将输入路由到特定的下游工作流中,具有少量的Agentic能力;State Machine(状态机)类系统使用多个LLMs来执行多个路由步骤并且有能力确定每个步骤是继续还是完成,具有相当的Agentic能力;而Autonomous(自主体)类系统更进一步,能够使用工具甚至创造合适的工具去推进系统的进一步决策,具备完全的Agentic能力。

基于此,厂商在强调产品的Agent属性前,不妨先回答“How agentic is my system?”

当前不少领域的专业AI Agent依然不够成熟。相关调查显示,输出不精确、性能差强人意、用户不信任等问题困扰其落地。但如果我们换个思路:短期内商业化最成功的AI Agent,不一定是看起来“Agentic化”最高的产品;而是能够平衡性能、可靠性,以及用户信任的产品。

顺着这条思路,专业AI Agent最有前途的发展道路可能是:先重点应放在利用AI增强现有工具,而不是提供广泛的全自主独立服务。

用人机协同的方法,让人类参与监督和处理边缘案例。根据当前的能力和局限,设定不脱离现实的期望。通过结合严格约束的LLMs、良好的评估数据、人机协同监督和传统工程方法,在自动化等复杂任务方面实现可靠且良好的效果。

例如,红杉投资组合中的Rocks公司,其Agent是将人类员工融入其中。最初,Rocks开发了一项自动撰写、自动发送的技术。但他们发现将人类销售纳入流程时,表现提升了倍。于是,Rocks移除了自动发送的功能。

根据具体业务场景,有些公司可以开发Agent完成任务的技术,比如网络安全领域的Expo;而有些公司则尽量选择用Agent“增强”人类员工,比如Rocks。

那么,2025年会发生什么?

首先,不止是编程,更多垂直领域将跑出“种子选手”。红杉合伙人 Ktantine Buhler预测:医疗和教育等“高服务成本”领域将成为 AI 技术的下一个重要战场。

同时,根据LangChain报告显示:人们希望将耗时任务交给AI Agent——充当“知识过滤器”:快速提炼关键信息,用户无需自己手动筛选海量数据;“生产力加速器”:协助用户安排日程、管理任务,让人类专注于更重要的工作;“客服神助攻”:帮助企业更快地处理客户咨询、解决问题,大幅提升团队的响应速度。

换句话说,所有耗时、耗力、耗成本的工作有望率先被垂直领域专业AI Agent替代。

其次,AI Agent部署将由“单”变“多”。一方面,AI Agent将从单一智能体发展到“体协作”模式。2025年会出现更多Multi-agent模式,多个Agent 扮演不同角合作完成任务。例如,清华面壁智能的开源项目ChatDev。每个 Agent 被赋予了不同的身份,有的是 CEO,有的是产品经理,有的是程序员,它们能够彼此互相合作,共同完成任务。

另一方面,随着⼤模型对图像和视频信息的处理能⼒快速提升,2025年将开始出现更为综合性的多模态交互,AI能够通过物联⽹、特定信息等多种感知通道进⾏协同。多模态输⼊和输出使AI交互性更强、交互频次更⾼,适⽤场景也更加丰富,AI产品整体⽔平显著提升。

其中,Agent作为融合感知、分析、决策和执⾏能⼒的智能体,其交互的主动性和⾃动化远超现有工具。

根据量子位智库观察:从技术和配套设施两⽅⾯发展来看,从2025年开始,AI Agent即将⼴泛投⼊使⽤。AI Agent有望带来独属于AI 2.0时代的交互⽅式、产品形态和商业模式。

结语

在电影《2001:太空漫游》的开头,一草食人猿挣扎在饥饿和死亡的边缘,人猿首领偶然挥舞了一下手里的棒骨,“发现”它居然是一件趁手的工具。从此,他们开始狩猎小动物,成为食肉动物,逐步站上了食物链顶端。

如果未来的人类俯瞰2025年,可能会发现,这又是一个人类进化的关键时刻,而AI Agent正是那根趁手的“棒骨”。

正如Andrej Karpathy所言,AI Agent代表着一个疯狂的未来。

有趣的是,Agent一词源于拉丁语的Agere,意思是“to do”。

如何抓住这个疯狂的未来?你可能只需要“Agent”。

#感谢您对电脑配置推荐网 - 最新i3 i5 i7组装电脑配置单推荐报价格的认可,转载请说明来源于"电脑配置推荐网 - 最新i3 i5 i7组装电脑配置单推荐报价格

本文地址:http://www.dnpztj.cn/biancheng/1187550.html

相关标签:无
上传时间: 2025-07-22 14:26:11
留言与评论(共有 15 条评论)
本站网友 msn账号
13分钟前 发表
一个共识是:Oura的成功与AI关系并不大
本站网友 炎症性肠病
27分钟前 发表
大模型和AI Agent项目受投资人的关注度最高——大模型发生19起融资案
本站网友 福州二手别墅
4分钟前 发表
成功率也只有5.8%
本站网友 女性安全期自测
30分钟前 发表
(图片:玩家与谷歌AI Agent互动)OpenAI虽然是基础模型的领先者
本站网友 玄武租房
23分钟前 发表
设定不脱离现实的期望
本站网友 东方体育中心游泳馆
13分钟前 发表
其中Tool use能力已经初步落地;记忆机制的进步非常值得期待;LLMs的进步则取决于巨头的能力边界等等
本站网友 罗汉果水
28分钟前 发表
目前大热的AI Agent仍是“虚火”
本站网友 11月11
2分钟前 发表
点击按钮以及打字等等
本站网友 中式快餐连锁店排名
25分钟前 发表
不需要思考
本站网友 上犹二手房
6分钟前 发表
人类智慧仍在进步
本站网友 蔬菜配送
16分钟前 发表
多数公司已经开始进行业务调整
本站网友 水手之家
15分钟前 发表
他提出了Agentic System(智能体系统)
本站网友 理财产品是什么
22分钟前 发表
俄亥俄州立大学和斯坦福大学的科学家团队提出了一个有趣的思路:让AI拥有一个类似人类海马体的“记忆大脑”
本站网友 岁岁重阳今又重阳
9分钟前 发表
除此之外